Philadelphia University
Faculty of Science Department of Basic Sciences and Mathematics First Semester, 2020/2021

	Course Syllabus
Course Title: Linear Algebra 1	Course code: 250241
Course Level: 1	Course prerequisite (s) and/or corequisite (s): 250101
Lecture Time: Sun, Tue., Thur.. 11:10-12:00	Credit hours: $\mathbf{3}$ credit hours

Academic Staff Specifics				
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Dr. Rola Alseidi	Assist.Prof.	812 Faculty of Engineering		ralseidi@philadelp

Course module description:

It includes the study of System of Linear Equations, Gaussian Elimination, Methods to Find \mathbf{A}^{-1}, Matrices, Determinants, Euclidean Vector spaces, General Vector spaces, Subspaces, Linear Independence and Dependent Basis, Dimension, Row Space, Column Space, Null Space, Theory and Applications.

Course module objectives:

- To enable the students to carry on Matrix Operations.
- To enable students to solve Systems of Linear Equations using Matrices, and Gaussian Elimination.
- To understand the concepts of Vector Spaces.
- To understand Subspaces, and Basis.
- To carry on Row Space, Column Space, and Null Space.

Course/ module components

Text Book

Title: Elementary Linear Algebra $11^{\text {th }}$ Edition.
Author Howard Anton, Chris Rorres
Publisher: Wiley 2015

- Support material (s) (vcs, acs, etc) .
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable) .

Teaching methods:

Lectures, discussion groups, tutorials, problem solving, debates, etc.

Learning outcomes:

- Knowledge and understanding

Understanding of the concepts of vectors and linear algebra .

- Cognitive skills (thinking and analysis).

Applying the principles of systems of linear equations and matrices in some real world problems

- Communication skills (personal and academic).

Scientific thinking and applications develops communication skills

- Practical and subject specific skills (Transferable Skills).

Applying the concepts of linear algebra in simple experiments

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects.
- Quizzes.
- Home works.
- Final examination: 40 marks

Allocation of Marks	
Assessment Instruments	Mark
Mid-Term	$\mathbf{3 0 \%}$
Final examination: 40 marks	$\mathbf{5 0 \%}$
Reports, research projects, Quizzes, Home works, Projects	$\mathbf{2 0 \%}$
Total	$\mathbf{1 0 0}$

Documentation and academic honesty

- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

Week	Basic and support material to be covered	Homework/reports and Their due dates
(1)	CH01:Systems of Linear Equations And Matrices 1.1 Introduction to Systems of Linear Equations	Homework Ex 1.1
(2)	1.2 Gaussian Elimination	Homework Ex 1.2
(3)	Matrices and Matrix Operations Inverses; Algebraic Properties of Matrices	Homework Ex 1.3,1.4
(4)	1.5 Elementary Matrices and a Method for Finding A^{-1}	Homework Ex 1.5
(5)	1.6 More on Linear Systems and Invertible Matrices	Homework Ex 1.6
(6)First examination	1.7 Diagonal, Triangular, and Symmetric Matrices. Ch02: Determinants 2.1 Determinants by Cofactor Expansion	Homework Ex 1.7 Homework Ex 2.1
(7)	2.2 Evaluating Determinants by Row Reduction	Homework Ex 2.2
(8)	2.3 Properties of the Determinants; Cramer's Rule	Homework Ex 2.3
(9)	CH03: Euclidean Vector Spaces 3.1 Vectors in 2-Space, 3-Space, and n-Space	Homework Ex 3.1
(10)	3.2 Norm, Dot Product, and Distance in $R^{\boldsymbol{n}}$	Homework Ex 3.2
(11) Second examination	3.3 Orthogonality	Homework Ex 3.3
(12)	Ch04: General Vector Spaces Real Vector Spaces Subspaces	Homework Ex 4.1, 4.2
(13)	Linear Independence Coordinates and Basis	Homework Ex 4.3, 4.4
(14)	Dimension Change of Basis	Homework Ex 4.5,4.6
(15) Specimen examination (Optional)	Row Space, Column Space, and Null Space Rank, Nullity, and the Fundamental Matrix Spaces	Homework Ex 4.7,4.8
(16) Final Examination	Review and Exercises	

Expected workload:

On average students need to spend 2 hours of study and preparation for each $\mathbf{5 0}$-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references:

Books

- Linear algebra with applications by Leon, Steven J., 9th ed. Boston: Pearson Education Limited, 2015.
- Linear Algebra by L.W. Jhonson \& R.D. Riess \& J.T. Arnold- Addisson Wesely 2007.
- Linear Algebra by Eric Carlen_ Freeman 2007
- Linear Algebra and its applications by Gilbert Srang_Belmont, CA 2006
- Linear Algebra and its applications by David C. Lay_ pearson/addisson wesly2006.

Journals:

- www.math.technion.ac.il
- http://archives.math.utk.edu/topics/linear algebra.
- www.elsevier.com/wps/find/journaldescription.cws-home
- www.ilasic.math.uregina.ca/iic/journal

Websites:

- www.numbertheory.org/book
- http://ocw.mit.edu/ocwweb/mathematics.......(video lectures).
- http;//en.wikipedia.org/wiki/Linear-algebra.....(several links and text books).

